Abstract

Malate dehydrogenase (MDH) is a ubiquitous enzyme involved in cellular respiration across all domains of life. MDH's ubiquity allows it to act as an excellent model for considering the history of life and how the rise of aerobic respiration and eukaryogenesis influenced this evolutionary process. Here, we present the diversity of the MDH family of enzymes across bacteria, archaea, and eukarya, the relationship between MDH and lactate dehydrogenase (LDH) in the formation of a protein superfamily, and the connections between MDH and endosymbiosis in the formation of mitochondria and chloroplasts. The development of novel and powerful DNA sequencing techniques has challenged some of the conventional wisdom underlying MDH evolution and suggests a history dominated by gene duplication, horizontal gene transfer, and cryptic endosymbiosis events and adaptation to a diverse range of environments across all domains of life over evolutionary time. The data also suggest a superfamily of proteins that do not share high levels of sequential similarity but yet retain strong conservation of core function via key amino acid residues and secondary structural components. As DNA sequencing and 'big data' analysis techniques continue to improve in the life sciences, it is likely that the story of MDH will continue to refine as more examples of superfamily diversity are recovered from nature and analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.