Abstract

Malaria continues to be a serious problem for public health because of its occurrence in tropical and subtropical areas with inadequate healthcare systems and few resources. For prompt intervention and treatment of malaria, effective and precise diagnosis is essential. Professional pathologists examine blood smear films by hand to get a microscopic diagnosis and another way they will do a rapid antigen malaria test which produces the result of 50% accuracy. Convolutional neural network (CNN) is a type of deep learning (DL) model that has been effectively used for a variety of image recognition applications. Our suggested approach uses, improved machine learning (IML) methods like support vector machine (SVM)+principal component analysis (PCA) fit, SVM+t-distributed stochastic neighbor embedding (t-SNE) fit, and CNN architecture with an accuracy of 86.23%, 88.27%, and 97.16% accuracy respectively, to combine feature extraction, data augmentation, and modify the layers by including the SVM algorithm in the final layer of the CNN architecture. The proposed method will significantly reduce pathologists' burden by automating the identification of malaria and improving diagnosis accuracy in resourceconstrained contexts

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.