Abstract

The past one and half decades have witnessed a tremendous development of graphene electronics, and the key to the success of graphene is its exceptional properties. The lacking of an inherent bandgap endows graphene with excellent electrical properties but considerably limits its applications in light-emitting and high-performance graphene-based devices. Herein, an approach for the direct writing of semiconducting and photoluminescent fluorinated graphene (C4F) patterns on monolayer graphene by an optimized electron-beam-activated fluorination technique is reported. A series of characterization approaches, such as atomic force microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy were used to demonstrate the successful preparation of C4F for maskless lithography. Specially, a sharp and strong photoluminescence located at the purple light range of ∼380 nm was observed in C4F, demonstrating a desirable semiconducting nature, and the bandgap was further confirmed by follow-up electrical measurements, where the C4F filed-effect transistor exhibited a p-type semiconductor behavior and significantly enhanced on/off ratio. Therefore, this work provides a novel technique for the fabrication of graphene devices for promising electronic and optoelectronic applications, but also opens a route towards the tailoring and engineering of electronic properties of graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.