Abstract

So far, excitonic luminescence in metal halide (MH) has extensively been studied by many workers, with the interest not only in physics of excitons but also in its possible application in optoelectronics. In the actual MHs, however, excitonic luminescence is so weak that it is beyond the scope of applications. Here we report the rediscovery that inherent excitonic luminescence in MH is dominated by a dramatically high light-emitting mechanism. This is demonstrated using improved films of MH yielded by two simple, independent methods, both applicable to several MHs. For example, improved CsPbCl3 and CuBr films exhibit more than 103–104 times stronger excitonic luminescence than conventional films. Inherent excitonic luminescence in MH is promising for applications in exciton-based light-emitting devices, particularly in shorter-wavelength devices than the traditional, nonexcitonic ones because it is MH and only MH that includes many compounds with large band gap and large exciton binding energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.