Abstract

Knowledge of carrier transfer, in quantum dot sensitized solar cells, is the key to engineering the device structure and architecture optimization. In this work, Zinc oxide (ZnO) nanowire (NW) arrays were synthesized on glass wafers and on GaN thin films for application in photovoltaic and light-emitting devices. The nanowires grown on glass wafers were incorporated with CdSe/ZnS quantum dots (QD) and their steady state and lifetime photoluminescence (PL) were studied to investigate the feasibility of electron transfer from excited QDs to ZnO NWs. The results provide an indication that the injected electrons, from excited high quantum efficiency QDs, live longer and hence facilitate electron transport without undergoing non-radiative recombination at surface trap states. Morphology and optical properties of the ZnO nanowires on GaN film were also studied for application in light-emitting devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.