Abstract

AbstractUnique properties of MoSi2 open new opportunities for preparing bulk polymer‐derived ceramics (PDCs) displaying favorable structural‐functional capabilities. Herein, an ingenious production route via re‐pyrolysis process of ball‐milling‐induced rigid SiC(rGO, xMoSi2)p fillers/flexible polycarbosilane‐vinyltriethoxysilane‐graphene oxide (PCS‐VTES‐GO, PVG) precursors blends is proposed to obtain in situ formed SiC(rGO, xMoSi2) bulk PDCs. Interestingly, the possible dense β‐SiC/SiOxCy/Cfree(rGO, xMoSi2) framework suffers load and tiny microsized pores relaxes stress, which is beneficial to providing optimized hardness and fracture toughness, ceramic yield, and linear shrinkage. Attractively, MoSi2 prominently enhances thermal and electrical conductivities of the products owing to increased continuity and compactness. To the best of our knowledge, lightweight SiC(rGO, 20%MoSi2) bulk PDCs own brilliant ceramic yield (92.13%), liner shrinkage (6.69%), hardness (10.34 GPa), fracture toughness (4.35 Mpa·m1/2), and thermal conductivity (8.57 W·m–1·K–1), opening potential emerging uses in aerospace fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.