Abstract
This paper proposes a scheme to reduce big graphs to small graphs. It contracts obsolete parts and regular structures into supernodes. The supernodes carry a synopsis S_mathcal {Q} for each query class mathcal {Q} in use, to abstract key features of the contracted parts for answering queries of mathcal {Q}. Moreover, for various types of graphs, we identify regular structures to contract. The contraction scheme provides a compact graph representation and prioritizes up-to-date data. Better still, it is generic and lossless. We show that the same contracted graph is able to support multiple query classes at the same time, no matter whether their queries are label based or not, local or non-local. Moreover, existing algorithms for these queries can be readily adapted to compute exact answers by using the synopses when possible and decontracting the supernodes only when necessary. As a proof of concept, we show how to adapt existing algorithms for subgraph isomorphism, triangle counting, shortest distance, connected component and clique decision to contracted graphs. We also provide a bounded incremental contraction algorithm in response to updates, such that its cost is determined by the size of areas affected by the updates alone, not by the entire graphs. We experimentally verify that on average, the contraction scheme reduces graphs by 71.9% and improves the evaluation of these queries by 1.69, 1.44, 1.47, 2.24 and 1.37 times, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The VLDB journal : very large data bases : a publication of the VLDB Endowment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.