Abstract

We show the existence of a majorization ladder in bosonic Gaussian channels, that is, we prove that the channel output resulting from the nth energy eigenstate (Fock state) majorizes the channel output resulting from the (n+1)th energy eigenstate (Fock state). This reflects a remarkable link between the energy at the input of the channel and a disorder relation at its output as captured by majorization theory. This result was previously known in the special cases of a pure-loss channel and quantum-limited amplifier, and we achieve here its non-trivial generalization to any single-mode phase-covariant (or -contravariant) bosonic Gaussian channel. The key to our proof is the explicit construction of a column-stochastic matrix that relates the outputs of the channel for any two subsequent Fock states at its input. This is made possible by exploiting a recently found recurrence relation on multiphoton transition probabilities for Gaussian unitaries [Jabbour and Cerf, Phys. Rev. Res. 3, 043065 (2021)]. Possible generalizations and implications of these results are then discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.