Abstract

We study entanglement properties of two-mode squeezed thermal states subjected to two sources of decoherence: the common reservoirs and the bosonic memory Gaussian channel. For the former one, we find that there exist three different behaviors: no-sudden death, sudden death, and no-creation of entanglement. The range of parameters characterizing these processes is obtained. For the latter one, we obtain a threshold in the degree of squeezing above which the input states remain always entangled. Otherwise, no entanglement is allowed in bosonic Gaussian channel with memory effect. We show that a degree of memory for quantum channel can be help to increase the initial entanglement, while the mean number of added thermal photons is to fasten the decoherence process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call