Abstract

We study Majorana zero modes properties in cylindrical cross-section semiconductor quantum wires based on the $k \cdot p$ theory and a discretized lattice model. Within this model, the influence of disorder potentials in the wire and amplitude and phase fluctuations of the superconducting order-parameter are discussed. We find that for typical wire geometries, pairing potentials, and spin-orbit coupling strengths, coupling between quasi-one-dimensional sub-bands is weak, low-energy quasiparticles near the Fermi energy are nearly completely spin-polarized, and the number of electrons in the active sub-bands of topological states is small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.