Abstract

For an infinite Kitaev chain with an impurity described by a deltalike potential, we analytically prove that two overlapping Majorana bound states in a topologically trivial phase in the case of a small superconducting gap exist under the condition V0 = 2Δ, where V0 is the value of the potential and Δ is the superconducting order parameter. For a semi-infinite Kitaev chain with an impurity in the case of a small gap, we prove that there are two overlapping Majorana bound states in the trivial phase and one Majorana bound state in the topological phase and that the Majorana bound state in the latter case is stable under changes in the model parameters. We find explicit analytic expressions for the corresponding wave functions in all cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.