Abstract

Using the Bogoliubov–de Gennes Hamiltonian, we analytically study two models with superconducting order, the p-wave model with an impurity potential and the s-wave nanowire model with superconductivity induced by the proximity effect with an impurity potential in a Zeeman field with a spin–orbit interaction. Using the Dyson equation, we study conditions for the emergence of Andreev bound states with energies close to the boundary of the superconducting gap and the possibility for these states to pass into Majorana-like bound states. We prove that in the topological phase (in the p-wave case also in the trivial phase) for both models, the Andreev bound states with energy close to the boundary of the superconducting gap can exist, but although their emergence in the p-wave model is due to the appearance of a (nonmagnetic) impurity, they appear in the s-wave model only as a result of a local perturbation of the Zeeman field. For both models, the transition of the Andreev bound states into the Majorana states (and back) is impossible in the topological phase, which is explained by the topological protection of the Majorana-like bound states in the topological phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.