Abstract

We examine the transport properties of a double quantum dot system coupled to a topological superconducting nanowire hosting Majorana quasiparticles at its ends, with the central quantum dot attached to the left and right leads. We focus on the behavior of the local density of states and the linear conductance, calculated with the aid of the numerical renormalization group method, to describe the influence of the Majorana coupling on the low-temperature transport properties induced by the Kondo correlations. In particular, we show that the presence of Majorana quasiparticles in the system affects both the spin-up and spin-down transport channels, affecting the energy scales associated with the first-stage and second-stage Kondo temperatures, respectively, and modifying the low-energy behavior of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call