Abstract

We study a periodically driven quantum dot in two different configurations. In the first setup, a quantum dot coupled to a topological superconductor and a normal metal lead. In the second setup, a T-shape quantum dot connected to two topological superconductors and side coupled to a normal metal lead. By a combination of non-equilibrium Green’s function techniques and Floquet’s formalism, we obtain the quasienergy spectra as a function of the amplitude, frequency, and superconducting phase difference. We show that the states develop unique electronic responses, such as the broken particle-hole symmetry that appears when considering the non-locality of Majorana bound states. Finally, we compute the time-average current and the differential conductance to reveal these spectra signatures through physically measurable magnitudes in the two proposed configurations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call