Abstract
The boundary of topological superconductors might lead to the appearance of Majorana edge modes, whose non-trivial exchange statistics can be used for topological quantum computing. In branched nanowire networks one can exchange Majorana states by time-dependently tuning topologically non-trivial parameter regions. In this work, we simulate the exchange of four Majorana modes in T-shaped junctions made out of p-wave superconducting Rashba wires. We derive concrete experimental predictions for (quasi-)adiabatic braiding times and determine geometric conditions for successful Majorana exchange processes. Contrary to the widespread opinion, we show for the first time that in the adiabatic limit the gating time needs to be smaller than the inverse of the squared superconducting order parameter and scales linearly with the gating potential. Further, we show how to circumvent the formation of additional Majorana modes in branched nanowire systems, arising at wire intersection points of narrow junctions. Finally, we propose a multi qubit setup, which allows for universal and in particular topologically protected quantum computing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.