Abstract

To assess whether the cAMP-dependent protein kinase-A and/or the diacylglycerol-dependent protein kinase C (PKC) pathways play important roles in the activation of CRF neurons in vivo under physiological conditions, we tested the effect of microinjection of 8-bromo-cAMP (8-Br-cAMP) or 12-O-tetradecanoyl phorbol 13-acetate (TPA) into both paraventricular nuclei (PVN) of the hypothalamus in conscious rats. Both 8-Br-cAMP and TPA increased plasma ACTH concentrations and the POMC messenger RNA (mRNA) concentrations in the anterior pituitary. While injection of 8-Br-cAMP also increased CRF mRNA concentrations in hypothalamic tissue containing the PVN, TPA injection had no effect on CRF mRNA concentrations there. During insulin-induced hypoglycemia, which stimulates CRF gene expression and release, c-fos and c-jun mRNA increases in the hypothalamic tissue preceded the increase in the CRF mRNA level after insulin-induced hypoglycemia. Antisense oligodeoxyribonucleotides (oligos) directed against c-fos, c-jun, or the cAMP response element binding protein (CREB) mRNA were injected into both PVN before insulin-induced hypoglycemia to assess whether activator protein-1 or CREB mediates transcriptional activation of CRF during hypoglycemia. Only antisense oligo against CREB mRNA reduced the CRF mRNA level after insulin-induced hypoglycemia. These results suggest that protein kinase A may transduce intracellular signals in CRF neurons under physiological conditions and raises the possibility that CREB may be involved in stress-induced CRF gene expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call