Abstract

We propose a detailed three-dimensional model, with atomic detail, for the structure of the Escherichia coli 16 S rRNA decoding site in a complex with mRNA and the A and P-site tRNAs. Model building began with four primary assumptions: (1) A and P-site tRNA conformations are identical with those seen in the tRNA crystal structure; (2) A and P-site tRNAs adopt an S-type orientation upon binding mRNA in the ribosome; (3) A1492 and A1493 bind non-specifically to the mRNA through a series of hydrogen bonds; and (4) C1400 lies in close proximity to the P-site tRNA wobble base in order to satisfy a UV-induced photocrosslink formed between the two residues. We have models with both major groove and minor groove binding of the tRNA/mRNA complex to the decoding site RNA, and conclude that major groove binding is more likely. Both classes of models maintain structural features reported in the NMR structure of the A-site region of the decoding site RNA with bound paromomycin. We also present models for the tRNA/mRNA complex bound to the decoding site RNA in the presence of the aminoglycoside paromomycin. We discuss possible mechanisms for ribosomal proof reading and antibiotic disruption of this proofreading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call