Abstract

Anticancer drugs bind with DNA nucleobase pairs (AT and GC) through different binding modes such as intercalation, groove binding, covalent binding etc. Quantum mechanical DFT method is quite useful for computing the interaction energy value for anticancer drug-DNA nucleobase complexes. In our study, we have taken some of the anticancer drugs to investigate the interaction energy for drug-DNA complexes. Among the different binding modes of anticancer drugs; minor and major groove binding in DNA base pair is also an important aspect for anticancer drugs; therefore some anticancer drugs may be minor groove specific and some may be major groove specific. Since, such sequence-specific experimental studies for drug-DNA nucleobase complexes are very complicated and hence this may be investigated by using quantum mechanical theoretical studies, using M062X basis set. Our studies reveal that the stacked models of anticancer drugs-DNA nucleobase (AT and GC) complexes always show negative interaction energy values and among all such complexes the most negative interaction energy value results the most stable and favoured stacked systems. The stacking interaction energies for anticancer drugs-DNA nucleobase (AT and GC) complexes can easily be reflected in the interaction of energy plots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.