Abstract
The biophysical properties of a crop are a good indicator of potential crop stress conditions. However, these visible properties cannot indicate areas exhibiting non-visible stress, e.g., early water or nutrient stress. In this research, maize crop biophysical properties including canopy height and Leaf Area Index (LAI), estimated using drone-based RGB images, were used to identify stressed areas in the farm. First, the APSIM process-based model was used to simulate temporal variation in LAI and canopy height under optimal management conditions, and thus used as a reference for estimating healthy crop parameters. The simulated LAI and canopy height were then compared with the ground-truth information to generate synthetic data for training a linear and a random forest model to identify stressed and healthy areas in the farm using drone-based data products. A Healthiness Index was developed using linear as well as random forest models for indicating the health of the crop, with a maximum correlation coefficient of 0.67 obtained between Healthiness Index during the dough stage of the crop and crop yield. Although these methods are effective in identifying stressed and non-stressed areas, they currently do not offer direct insights into the underlying causes of stress. However, this presents an opportunity for further research and improvement of the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.