Abstract

This study compares the kinetics of crystal growth of indomethacin from supersaturated suspensions at varying degrees of supersaturation (2 ≤ S ≥ 9) in the presence of seed crystals of the γ-form of indomethacin, the lowest energy polymorph. At high S (6 ≤ S ≥ 9), the crystal growth was first order with rate coefficients (kG ) that were nearly constant and consistent with the value predicted for bulk-diffusion control. At lower S (<6), kG values were significantly smaller, decreasing approximately linearly with a decrease in S. The decline in kG at low S was attributed to a prolonged period during the initial stages of crystal growth in which surface integration was rate limiting. The apparent solubility of indomethacin after crystal growth for 3 days increased by ∼1.6-fold at both low (S = 2) and high (S = 6) degrees of supersaturation suggesting that a higher energy surface layer was deposited on the γ-form seed crystals during crystal growth. When growth experiments were repeated at low S in the presence of indomethacin seed crystals isolated from a previous crystal growth experiment (i.e., seed crystals having higher energy surface), kG matched the higher values observed for bulk diffusion-controlled crystal growth. Crystal growth experiments were also conducted at S < 1.6 using a constant infusion of an indomethacin solution in the presence of γ-form seed crystals to obtain kG under conditions where deposition of a higher energy surface could not occur. At these conditions, the smaller value of kG indicative of surface integration control was again observed and the apparent solubility of indomethacin after crystal growth matched that of the γ-form. A quantitative mechanistic understanding of the crystal growth kinetics of indomethacin derived from experiments at high and low S may be useful in future studies aimed at understanding the inhibitory effects of pharmaceutical excipients on the crystal growth of poorly soluble compounds and their utility in maintaining drug supersaturation during oral absorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.