Abstract

SUMMARYGenes or sequences of DNA present in multiple copies per cell include entire genomes of mitochondria and chloroplasts, nuclear ribosomal RNA genes, and highly repetitive sequences in heterochromatin. All copies are nearly identical, in spite of mutational pressure and weak selection. A zygote containing mitochondrial or chloroplast genophores of two different genotypes quickly produces progeny pure for one genotype or another (vegetative segregation). Evidence from yeast andChlamy-domonassuggests that organelle genophores undergo repeated rounds of random mating and recombination. When two molecules carrying different alleles at a locus recombine, gene conversion can result in the cell becoming pure for one allele. Stochastic matching and conversion (SMAC) has been studied by computer simulations which suggest that it will tend to eliminate new mutations in yeast mitochondrial DNA and speed up vegetative segregation. We have verified previous suggestions that gene conversion, occurring during unequal mitotic sister-strand crossing-over, provides an efficient mechanism for maintaining the homogeneity of repeated sequences in eukaryotic chromosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.