Abstract

Boiling experiments on eutectic sodium-potassium alloy in the model of fast reactor subassembly under conditions of low-velocity circulation carried out at the IPPE call for further investigations into numerical modeling of the process. The paper presents analysis of pin bundle liquid metal boiling, stages of the process, its characteristics (wall temperature, coolant temperature, flow rate. pressure void fraction and others), that allowed the pattern map to be drawn. The problem of conversion of the data gained in Na-K mock-up experiments to in-pile sodium reactor operating conditions is analyzed here, as well as thermodynamic similarity of liquid metal coolants and eutectic Na-K alloy. Data on bundle boiling in Na-K are presented in comparison with those in different liquid metals. Analysis of data on liquid metal heat transfer in cases of pool boiling, boiling in tubes, in slots, and in pin bundles, as well as data on critical heat flux in tubes was performed and discussed in the paper. The relationship for calculation of critical heat flux in liquid metal derived by the authors is presented. Results of numerical modeling of liquid metal boiling heat transfer during accident cooling of reactor core applied to experimental conditions of going from forced to natural circulation are presented, too.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.