Abstract

Antimicrobials against planktonic cells and established biofilms at low doses are in increasing demand to tackle antibiotic-resistant biofilm infections. As a promising alternative to antibiotics, cationic polymers can effectively kill planktonic microbes but usually require high concentrations to eradicate the established biofilms. Herein, we developed a series of sulfonium-based homopolymers with cationic sulfoniums and alkane spacers in the main chain. These polysulfoniums presented effective activity against planktonic fungi (Candida albicans) and bacteria (Escherichia coli and Staphylococcus aureus) with minimum inhibition concentrations (MICs) of 0.5-32 μg/mL, and the optimal composition can provide an 80-90% reduction in biofilm mass and >99% killing of Candida albicans and Escherichia coli cells in 3-day mature biofilms at 2 × MIC as well as steadily low hemolytic toxicity. The influence of amphiphilicity and charge density of polysulfonium homopolymers on their antimicrobial activity against planktonic microbes and mature biofilms was investigated to provide insights for effective antimicrobial polymer design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.