Abstract
Seed storage proteins are synthesized on the endoplasmic reticulum (ER) as precursors and then transported to protein storage vacuoles, where they are processed into mature forms. Here, we isolated an Arabidopsis thaliana mutant, maigo2 (mag2), that accumulated the precursors of two major storage proteins, 2S albumin and 12S globulin, in dry seeds. mag2 seed cells contained many novel structures, with an electron-dense core that was composed of the precursor forms of 2S albumin. 12S globulins were segregated from 2S albumin and were localized in the matrix region of the structures together with the ER chaperones lumenal binding protein and protein disulfide isomerase, which were more abundant in mag2 seeds. The MAG2 gene was identified as At3g47700, and the MAG2 protein had a RINT-1/TIP20 domain in the C-terminal region. We found that some MAG2 molecules were peripherally associated with the ER membrane. MAG2 had an ability to bind to two ER-localized t-SNAREs (for target-soluble NSF [N-ethylmaleimide-sensitive fusion protein] attachment protein receptor; At Sec20 and At Ufe1). Our findings suggest that MAG2 functions in the transport of storage protein precursors between the ER and Golgi complex in plants.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have