Abstract

The opto-electronic oscillators (OEOs) hosting self-sustained oscillations by a time-delayed mechanism are of particular interest in long-haul signal transmission and processing. On the other hand, owing to their unique tunability and compatibility, magnons—as elementary excitations of spin waves—are advantageous carriers for coherent signal transduction across different platforms. In this work, we integrated an opto-electronic oscillator with a magnonic oscillator consisting of a microwave waveguide and a yttrium iron garnet sphere. We find that, in the presence of the magnetic sphere, the oscillator power spectrum exhibits sidebands flanking the fundamental OEO modes. The measured waveguide transmission reveals anti-crossing gaps, a hallmark of the coupling between the opto-electronic oscillator modes and the Walker modes of the sphere. Experimental results are well reproduced by a coupled-mode theory that accounts for nonlinear magnetostrictive interactions mediated by the magnetic sphere. Leveraging the advanced fiber-optic technologies in opto-electronics, this work lays out a new, hybrid platform for investigating long-distance coupling and nonlinearity in coherent magnonic phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call