Abstract
As a photonic-based microwave signal generation method, the optoelectronic oscillator (OEO) has the potential of meeting the increasing demand of practical applications for high frequency, broadband tunability and ultra-low phase noise. However, conventional OEO systems implemented with discrete optoelectronic devices have a bulky size and low reliability, which extremely limits their practical applications. In this paper, a hybrid-integrated wideband tunable OEO with low phase noise is proposed and experimentally demonstrated. The proposed hybrid integrated OEO achieves a high integration level by first integrating a laser chip with a silicon photonic chip, and then connecting the silicon photonic chip with electronic chips through wire-bonding to microstrip lines. A compact fiber ring and an yttrium iron garnet filter are also adopted for high-Q factor and frequency tuning, respectively. The integrated OEO exhibits a low phase noise of -128.04 dBc/Hz @ 10 kHz for an oscillation frequency of 10 GHz. A wideband tuning range from 3 GHz to 18 GHz is also obtained, covering the entire C, X, and Ku bands. Our work demonstrates an effective way to achieve compact high-performance OEO based on hybrid integration, and has great potential in a wide range of applications such as modern radar, wireless communication, and electronic warfare systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.