Abstract

A theoretical study on the interplay of frustrated skyrmion and magnons should reveal new physics and future experiment designs. In this study, we investigate the magnon-driven dynamics of frustrated skyrmion in synthetic antiferromagnets based on micromagnetic simulations, focusing on the effect of skyrmion helicity oscillation. The oscillation speed and Hall angle of the frustrated skyrmion depending on the magnon intensity and damping constant are simulated, which demonstrates that the skyrmion helicity oscillation effectively suppresses Hall motion. The elastic scattering theory reveals that the helicity oscillation affects the scattering cross-section of injected magnons, which in turn effectively modulates the skyrmion Hall motion. This study provides a comprehensive understanding of magnon-skyrmion scattering in frustrated magnets, thus benefiting future spintronic and magnonic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.