Abstract

AbstractMagnetic skyrmions are topologically nontrivial spin structures, and their existence in ferromagnetically coupled multilayers has been widely reported with a disordered arrangement. Here, a nucleation scenario of ordered skyrmions in nanostructured synthetic antiferromagnetic (SAF) multilayers is proposed and experimentally demonstrated using direct magnetization imaging, indirect magnetometer and magnetoresistance measurement, and micromagnetic simulation. Instead of relying on Dzyaloshinskii–Moriya interaction, the antiferromagnetic interlayer exchange coupling in the SAF multilayers fulfills the role of nucleation and stabilization of skyrmions. The robustness of the proposed skyrmion nucleation scenario is examined against temperature from 4.5 to 300 K and device size from 400 to 1200 nm. Interestingly, these synthetic skyrmions still behave well with a size less than 100 nm. The higher stability than generic magnetic domains can be attributed to topological protection. The results thus provide an artificial skyrmion platform to meet the functional needs of high density and designable arrangement in magnonic and spintronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call