Abstract

Higher estrus-associated temperatures (HEAT) are a hallmark feature in sexually active females. The overarching aim of this study was to characterize the variability, magnitude, and persistence of HEAT in heifers and suckled beef cows as well as identify associated factors when occurring during thermoneutral conditions at the onset of the spring breeding season. In both heifers and cows, estrus was induced using a 7-d controlled internal drug release (CIDR)-PGF2α protocol. Vaginal temperature after prostaglandin F2α administration was recorded every 5min using a Thermochron iButton affixed to a blank CIDR (containing no progesterone). Estrus was defined as when a heifer first stood to be mounted or when a cow had an Estrotect patch score of 3 or 4. Level of HEAT varied among individual animals. When comparing common HEAT variables using a mixed model with date nested within a year, maximum HEAT (39.9 ± 0.1 and 40.0 ± 0.1 °C) and duration (15.5 ± 0.8 and 15.4 ± 0.7) were similar in heifers and cows, respectively. However, the magnitude and persistence of HEAT differed. Total area under the HEAT curve was 117.1 ± 13.5 and 158.7 ± 12.3 for heifers vs cows, respectively (P = 0.0571). Further, 42.9% of heifers and 49% of cows had maximum HEAT ≥ 40 °C which persisted up to 6.5 and 10h, respectively. When ambient conditions were predominantly thermoneutral, temperature humidity index had minimal impact on HEAT (mixed model, repeated measures over time). Toward identifying associated factors with different aspects of HEAT using best fit hierarchical linear regression models, baseline vaginal temperature and baseline duration were the most highly associated independent variables. Follicle size, estradiol and progesterone levels, and other available animal-related variables (e.g., age, weight, hair coat score) explained only a small amount of variation in HEAT. In summary, level of HEAT varies in estrus females even under thermoneutral conditions. Because HEAT can persist for an extended time, direct effects on fertility important components are unavoidable. Whether HEAT is a good or bad component of the periovulatory microenvironment is the basis of ongoing and future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.