Abstract

Magneto bound exciton and the charged exciton in a GaMn 0.02 As / Ga 0.6 Al 0.4 As quantum dot are reported with the spatial confinement effect. The numerical calculations are carried out with the inclusion of exchange interaction between the carrier and the magnetic impurities. The binding energies of exciton and the trions and the optical transition energy are obtained as a function of dot radius. Numerical computations are followed using exact diagonalization method. The spin polaronic energy of the exciton and the charged excitons are obtained using a mean field theory in the presence of magnetic field strength. The magnetization of Mn ion impurities as a function of dot radius is investigated. The effective g-factor of conduction (valence) band electron (hole) is obtained in the GaMnAs quantum dot. The magnetic field induced size dependence of effective Landé g-factor is computed. The result shows that (i) the geometrical dependence on sp-d exchange interaction in the GaMn 0.02 As / Ga 0.6 Al 0.4 As quantum dot has great influence with the geometrical confinement, (ii) the monotonic behavior of effective g-factor with the reduction of dot radius is observed, (iii) the Landé factor is more sensitive if the geometrical confinement effect is included and (iv) the value of effective g-factor increases when the spatial confinement is enhanced for all the dot radii. Our results show that the effective Landé g-factor can be manipulated negative to positive values in the GaMn 0.02 As / Ga 0.4 Al 0.6 As quantum dot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call