Abstract

AbstractRecently, oxide-based dilute magnetic semiconductors (DMS) have attracted an immense research interest to the scientists due to the possibility of inducing room temperature ferromagnetism and potential uses in novel spintronic devices. In2O3, a transparent opto-electronic material, is an interesting prospect for spintronics due to its unique combination of magnetic, electrical, and optical properties. High quality thin films of Co-doped In2O3 DMS were grown on quartz substrates using pulsed laser deposition technique. All the films have been characterized using different techniques such as x-ray diffraction, Raman spectroscopy, optical transmission spectroscopy, electrical resistivity, and Hall Effect measurement. The effect of growth temperature and oxygen pressure on the electrical, magnetic, and optical properties of these films have been studied in detail. The optical transparency in all the films is high. It has been observed that the optical transparency depends on growth temperature and oxygen pressure. The electrical parameters such as resistivity, carrier concentration, and mobility strongly depend on both oxygen pressure and growth temperature. The films grown at low temperature are semiconducting in nature while the films grown at high temperature are metallic. Detailed temperature and magnetic field dependent resistivity, magnetoresistance, and Hall effect data will be presented. This work is supported by Research Corporation (award number CC6166).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.