Abstract
We make an in-depth analysis of electronic transport and localization properties of non-interacting electrons in a Sierpinski gasket (SPG) fractal lattice in presence of magnetic field within a tight-binding framework. Unlike conventional symmetric systems, asymmetric SPG triangle leads to more conducting behavior, and thus delocalization of energy states, which we examine by calculating magnetic flux driven circular current and inverse participation ratio. The spectral peculiarity, that is the gapped nature of energy spectrum in fractal lattices, is clearly reflected from the variation of current with electron filling, yielding possibilities of getting filling dependent switching action. The effect of temperature is also discussed. Our analysis can be utilized to study magnetotransport properties in any other fractal lattices having loop sub-structures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.