Abstract

We discuss a quantum-mechanical picture for interlayer magnetotransport in quasi-one-dimensional layered conductors. We show that the lowest order contribution of interlayer coupling to interlayer conductivity, which originates from a single tunneling process between two neighboring layers, leads all of the fundamental angular effects; Lebed resonance, the Danner–Kang–Chaikin oscillations, and the third angular effect. We also discuss the mean field picture of charge density wave (CDW) and spin density wave (SDW) under magnetic fields. We see that the orbital quantization effect causes the successive transitions of field-induced SDW state. It is also discussed that the CDW state could show complicated phase transitions under magnetic fields as a result of competition between Zeeman effect and orbital effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call