Abstract
Polarization conversion of light reflected from quantum wells governed by both magnetic field and light propagation direction is observed. We demonstrate that the polarization conversion is caused by the magnetospatial dispersion in quantum wells which manifests itself in the reflection coefficient contribution bilinear in the in-plane components of the magnetic field and the light wave vector. The magnetospatial dispersion is shown to arise due to structure inversion asymmetry of the quantum wells. The effect is resonantly enhanced in the vicinity of the heavy-hole exciton. We show that microscopically the magnetospatial dispersion is caused by the mixing of heavy- and light-hole states in the quantum well due to both orbital effect of the magnetic field and the in-plane hole motion. The degree of the structure inversion asymmetry is determined for GaAs/AlGaAs and CdTe quantum wells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.