Abstract

ABSTRACTBK7 is a high-quality crown glass which is used where additional benefits such as temperature sensitive applications of fused silica glass are not required. Due to very low inclusion content with extremely low bubbles, BK7 glass can find its application in lens manufacturing. The present work focuses on nanofinishing of the BK7 glass specimen for ratifying its utility in practical application. A programmable logic controlled 3-axis motions are fed to the magnetorheological (MR) rotating tool for finishing the glass specimen. MR polishing fluid used for nanofinishing consists of deionized water, magnetic iron particles, and cerium oxide powder. Under the influence of magnetic field, the stiffened MR polishing fluid is assisted in reducing the surface roughness of glass up to nanolevel range. Optical properties such as transmittance, absorbance, and reflectance of finished BK7 glass are analyzed and found suitable for lens manufacturing. Results of higher surface quality with excellent finishing are obtained by the present MR finishing process. After 90 min of finishing, the surface roughness values Ra and Rq are reduced to 17 and 27 nm from the initial values of 41 and 57 nm, respectively. To study the surface morphology, scanning electron microscopy is performed on BK7 glass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.