Abstract
Inspired in pyrochlore materials presenting residual entropy and featuring collective excitation behaving like emergent monopoles, geometrically frustrated arrays of nanomagnets, denominated artificial spin ices (ASIs), were proposed as an interesting platform to investigate such excitation at room temperature. However, in such artificial systems, emergent magnetic monopoles lack the same freedom present their natural counterpart, once energetic strings connecting opposite magnetic charges arise. In this work, we aim to experimentally investigate the proposed degeneracy obtained in connected square arrays of ASIs, a characteristic that allows a reduction in the string connecting monopole–antimonopole pairs in regular non-connected ASIs and could represent an important development for technological applications of connected nanomagnets. As in general those systems are developed by nanofabrication processes involving expensive and time-consuming physical vapour deposition techniques, we also present a new nanofabrication route using an electrodeposition technique for permalloy growth in different lattice geometries as an alternative for fast and low-cost ASI system production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.