Abstract

Spin Hamiltonians, like the Heisenberg model, are used to describe the magnetic properties of exchange-coupled molecules and solids. For finite clusters, physical quantities, such as heat capacities, magnetic susceptibilities or neutron-scattering spectra, can be calculated based on energies and eigenstates obtained by exact diagonalization (ED). Utilizing spin-rotational symmetry SU(2) to factor the Hamiltonian with respect to total spin S facilitates ED, but the conventional approach to spin-adapting the basis is more intricate than selecting states with a given magnetic quantum number M (the spin z-component), as it relies on irreducible tensor-operator techniques and spin-coupling coefficients. Here, we present a simpler technique based on applying a spin projector to uncoupled basis states. As an alternative to Löwdin’s projection operator, we consider a group-theoretical formulation of the projector, which can be evaluated either exactly or approximately using an integration grid. An important aspect is the choice of uncoupled basis states. We present an extension of Löwdin’s theorem for s=12 to arbitrary local spin quantum numbers s, which allows for the direct selection of configurations that span a complete, linearly independent basis in an S sector upon the spin projection. We illustrate the procedure with a few examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.