Abstract

Magnetic nanoparticles (MNPs) are of great interest for industrial and medical applications. Therefore, the properties of the particles have to be well controlled. Several magnetic measurement schemes have been developed in order to determine particle parameters such as size distribution and structural properties. In general, systems are designed either for the analysis of large amounts of MNP (≫1000) or for single particle investigation. Up to now, the region in between has been less studied. However, small and well defined amounts of MNPs are of high interest, e.g. for the systematic investigation of particle–particle interactions. In this paper, we present a method using electron beam lithographic preparation of small amounts of MNPs directly on a self-compensating high-temperature superconducting quantum interference device (SQUID) with micrometer dimensions which is insensitive to homogeneous fields and first order gradients but very sensitive to internal magnetic dipole fields. Magnetorelaxometry (MRX) measurements were carried out at 77K sample temperature in a magnetically shielded room in order to analyze the dynamic behavior of MNP samples and to evaluate the detection limit of our SQUID sensors. Calculations based on the magnetic moment superposition model (MSM) and finite element simulations (FEM) indicate that the MNP samples can be fabricated in a well-defined way by the presented method. Based on MRX measurements of a sample with 200 single-core magnetite MNPs with core diameters of 12nm, we estimate the detection limit of our SQUID MRX setup as 70 MNPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.