Abstract

We present a method and model for the direct and continuous separation of red and white blood cells in plasma. The method is implemented at the microscale using a microfluidic system that consists of an array of integrated soft-magnetic elements embedded adjacent to a microfluidic channel. The microsystem is passive and is activated via application of a bias field that magnetizes the elements. Once magnetized, the elements produce a nonuniform magnetic field distribution in the microchannel, which gives rise to a force on blood cells as they pass through the microsystem. In whole blood, white blood cells behave as diamagnetic microparticles while red blood cells exhibit diamagnetic or paramagnetic behaviour depending on the oxygenation of their haemoglobin. We develop a mathematical model for predicting the motion of blood cells in the microsystem that takes into account the dominant magnetic, fluidic and buoyant forces on the cells. We use the model to study red/white blood cell transport, and our analysis indicates that the microsystem is capable of rapid and efficient red/white blood cell separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.