Abstract
The direct, ultrafast excitation of polar phonons with electromagnetic radiation is a potent strategy for controlling the properties of a wide range of materials, particularly in the context of influencing their magnetic behavior. Here, we show that, contrary to common perception, the origin of phonon-induced magnetic activity does not stem from the Maxwellian fields resulting from the motion of the ions themselves or the effect their motion exerts on the electron subsystem. Through the mechanism of electron-phonon coupling, a coherent state of circularly polarized phonons generates substantial non-Maxwellian fields that disrupt time-reversal symmetry, effectively emulating the behavior of authentic magnetic fields. Notably, the effective fields can reach magnitudes as high as 100 T, surpassing by a factor of the Maxwellian fields resulting from the inverse Faraday effect; α is the fine-structure constant. Because the light-induced nonreciprocal fields depend on the square of the phonon displacements, the chirality the photons transfer to the ions plays no role in magnetophononics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have