Abstract
InAs layers of very high electrical quality are grown on GaAs substrates by molecular beam epitaxy (MBE). The observation of sharp cyclotron resonance and donor lines (linewidths approximately=1 cm-1) in far-infrared magneto-optical studies suggest that the low-temperature mobilities in the bulk of the films are in the range 200 000-300 000 cm2 V-1 s-1 with an electron concentration of approximately=2*1014 cm-3. A strong but broad cyclotron resonance line and the Shubnikov-de Haas effect are observed from a two-dimensional electron gas (2DEG) at the surface or GaAs interface (nS approximately=1*1012 cm-2 and mu s approximately=20 000 cm2 V-1 s-1). As a consequence of parallel conduction from the low mobility layer the Hall mobility measured from a 5 mu m thick sample is 80 000 cm2 V-1 s-1 at 77 K and that in a 2 mu m sample is only 30 000 cm2 V-1 s-1. The width of bulk cyclotron resonance and impurity lines depend only weakly on thickness and consequently scattering from dislocations generated by the misfit at the GaAs/InAs interface is not thought to affect the bulk mobility strongly down to film thicknesses of 1 mu m. The parallel conduction from the 2DEG also produces a large magnetoresistance.Please note - the first author name has been corrected from Homes to Holmes
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have