Abstract

Satellite attitude information is essential for pico-satellite applications requiring light-weight, low-power, and fast-computation characteristics. The objective of this study is to provide a magnetometer-only attitude estimation method for a low-altitude Earth orbit, bias momentum pico-satellite. Based on two assumptions, the spacecraft spherical symmetry and damping of body rates, a linear kinematics model of a bias momentum satellite’s pitch axis is derived, and the linear estimation algorithm is developed. The algorithm combines the linear Kalman filter (KF) with the classic three-axis attitude determination method (TRIAD). KF is used to estimate satellite’s pitch axis orientation, while TRIAD is used to obtain information concerning the satellite’s three-axis attitude. Simulation tests confirmed that the algorithm is suited to the time-varying model errors resulting from both assumptions. The estimate result keeps tracking satellite attitude motion during all damping, stable, and free rotating control stages. Compared with nonlinear algorithms, such as extended Kalman filer (EKF) and square root unscented Kalman filer (SRUKF), the algorithm presented here has an almost equal performance in terms of convergence time and estimation accuracy, while the consumption of computing resources is much lower.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.