Abstract

The aim of this paper is to study the use of the Extended Kalman filer (EKF) for sensorless control of a permanent magnet synchronous motor (PMSM) drive controlled by direct torque control (DTC). The main drawback of DTC is the necessity of short sampling period. The challenge for the EKF is therefore the minimization of its execution time. This is achieved by using so called reduced state space model of the drive with only two state variables, the rotor speed and the rotor position. It is proved by simulations and experiments that the EKF with this reduced model has the same performance as the four-dimensional full state space model at much lower computational cost. The sensorless DTC with the reduced model EKF was found to be equal to DTC with the full model EKF in terms of performace and superior in terms of computational cost. All experiments were carried out on a laboratory prototype of the drive with rated power of 250 W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.