Abstract

The magnetoimpedance effect is a versatile tool to investigate ferromagnetic materials, revealing aspects on the fundamental physics associated to magnetization dynamics, broadband magnetic properties, important issues for current and emerging technological applications for magnetic sensors, as well as insights on ferromagnetic resonance effect at saturated and even unsaturated samples. Here, we perform a theoretical and experimental investigation of the magnetoimpedance effect for the thin film geometry at the high frequency range. We calculate the longitudinal magnetoimpedance for single layered, multilayered, or exchange biased systems from an approach that considers a magnetic permeability model for planar geometry and the appropriate magnetic free energy density for each structure. From numerical calculations and experimental results found in literature, we analyze the magnetoimpedance behavior and discuss the main features and advantages of each structure. To test the robustness of the approach, we directly compare theoretical results with experimental magnetoimpedance measurements obtained at the range of high frequencies for an exchange biased multilayered film. Thus, we provide experimental evidence to confirm the validity of the theoretical approach employed to describe the magnetoimpedance in ferromagnetic films, revealed by the good agreement between numerical calculations and experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call