Abstract

AbstractThis article numerically scrutinizes magnetohydrodynamic flow of a nanofluid due to a nonlinearly curved stretching surface with third order slip flow conditions. The third order slip flow condition has not yet been discussed in fluid dynamics research. The mathematical modeling of the flow problem is given in partial differential equation form. The governing partial differential equations are transformed to high order ordinary differential equations using the similarity transformation and then solved numerically using a boundary value problem solver, bvp4c from Matlab software. The effect of the governing parameters on the flow of the velocity profile, concentration, and heat transfer characteristics are studied. Also graphs of the skin friction coefficient, local Nusselt number, and Sherwood number are drawn and their numerical values are tabulated. The numerical results of the study are compared with previously published articles in the limiting condition. The velocity of the flow field is reduced as the third order slip parameter and the first order slip parameter rises, but the velocity grows as the values of the second order slip flow parameter are elevated. The findings also indicate that the local Nusselt number is depreciated but local Sherwood numbers are elevated when the Soret and Dufour numbers are larger.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.