Abstract

Similarity solutions are obtained for one-dimensional cylindrical shock wave in a self-gravitating, rotational axisymmetric non-ideal gas with azimuthal or axial magnetic field in the presence of conductive and radiative heat fluxes. The total energy of the wave is non-constant. It is obtained that the increase in the Cowling number, in the parameters of radiative as well as conductive heat transfer and the parameter of the non-idealness of the gas have a decaying effect on the shock wave however increase in the value of gravitational parameter has reverse effect on the shock strength. It is manifested that the presence of azimuthal magnetic field removes the singularities which arise in some cases of the presence of axial magnetic field. Also, it is observed that the effect of the parameter of non-idealness of the gas is diminished by increasing the value of the gravitational parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.