Abstract

Multi-functional materials in actuator applications have been developed toward reversibility and sensitivity under various actuating fields. In this work, magneto-electro-responsive materials consisting of a polyurethane (PU) matrix and its composites embedded with magnetite nanoparticles (MNP) as a dispersed phase were fabricated to tailor the electromechanical properties and bending performance under electric, magnetic, and electromagnetic fields. Due to the superior characteristics of MNP over other magnetic materials, the composites fabricated with electronic polarization were highly responsive under electric field. The highest storage modulus sensitivity belonged to the 1.0% v/v MNP/PU composite which possessed the value of 3.46 at the electric field 2kVmm−1. Moreover, all of the PU composites behaved as an electrostrictive material in which the stress depended quadratically on the electric field. It was demonstrated that the PU composites also possessed very good recoverability, fast response (<15s) and large bending angle relative to that of pristine PU under applied electric field. Interestingly, the steady state storage modulus response was attained within the first electrical actuation cycle and the PU composite was a fully reversible material. In addition, it was shown that superparamagnetism was a common characteristic of all fabricated composites under magnetic field. The 3.0%v/v MNP/PU composite provided the largest bending distance up to 23.60mm, and 14.10mm under the magnetic field of 5000G, and the electromagnetic field of 320G, respectively. In summary, the MNP/PU composite material is a potential candidate to be used as a smart material under the influences of electric and/or magnetic fields over other existing dielectric materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call