Abstract
In prototype ferromagnet-antiferromagnet interfaces we demonstrate that surface acoustic waves can be used to identify complex magnetic phases arising upon evolution of exchange springs in an applied field. Applying sub-GHz surface acoustic waves to study the domain structure of the ferromagnetic layer in exchange-biased bilayers of ${\mathrm{Ir}}_{20}{\mathrm{Mn}}_{80}\ensuremath{-}{\mathrm{Co}}_{60}{\mathrm{Fe}}_{20}{\mathrm{B}}_{20}$, we are able to associate the magnetoelastic resonance with the presence of the exchange spin-spirals in both the ferromagnetic and antiferromagnetic layer. Our findings offer a complementary, integrative insight into emergent magnetic materials for applications of noncollinear spin textures in view of low-energy-consumption spintronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.