Abstract

Microwave measurements of the in-plane dielectric function of the spin-liquid candidate $\ensuremath{\kappa}$-(BEDT-TTF)${}_{2}$Cu${}_{2}$(CN)${}_{3}$ revealed anomalies below 300 K that indicate that charge and spin degrees of freedom are correlated down to 1.8 K. If the first anomaly around 100 K can be explained partly by a Debye relaxation model, it signals also the approach of an inhomogeneous high-temperature quantum critical phase (QC${}_{H}$) extending down to 6 K, where a second anomaly is observed at the crossover to the intermediate quantum critical phase (QC${}_{M}$) within which a third anomaly is detected near 3--4 K. The low-temperature anomalies are not only dependent on microwave frequency and power, but they are also strongly modified in a highly anisotropic way by a magnetic field. These dielectric results confirm that a scenario of coupled spin and charge degrees of freedom is indeed valid in this material at low temperatures, as suggested by several theoretical approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.