Abstract

The spinel NiCr$_2$O$_4$ is characterized using dielectric and high magnetic field measurements. The trends in the magnetodielectric response fall into three clear temperature regimes corresponding to known magnetic and structural transitions. Above 65\,K, weak magnetic field dependence of the dielectric constant is observed with no hysteresis. When 30\,K\,$\leq\,T\,\leq$\,65\,K, a strong dependence of the dielectric constant on the magnetic field is observed and hysteresis develops resulting in so called butterfly loops. Below 30\,K, magnetodielectric hysteresis is enhanced. Magnetodielectric hysteresis mirrors magnetic hysteresis suggesting that spin-spin interactions are the mechanism for the magnetoelectric effect in NiCr$_2$O$_4$. At high fields however, the magnetization continues to increase while the dielectric constant saturates. Magnetodielectric measurements of NiCr$_2$O$_4$ suggest an additional, previously unobserved transition at 20\,K. Subtle changes in magnetism and structure suggest that this 20\,K anomaly corresponds to the completion of ferrimagnetic ordering and the spin driven structural distortion. We demonstrate that magnetocapacitance is a sensitive probe of magnetostructural distortion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.